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Abstract—In recent years, the rise in both natural and man-
made disasters, along with armed conflicts and terrorist threats,
has elevated the demand for Search and Rescue (SAR) missions
worldwide. This paper underscores the critical necessity to
enhance SAR capacity, safety, and capabilities, with a primary
goal of reducing response times through the integration of
robots into SAR operations. The examination of research on
robotized SAR highlights deficiencies in both software and
hardware, particularly focusing on perception systems for
robotized SAR platforms.

I. INTRODUCTION

Recent years have seen an increase in the number of
both man-made and natural disasters. Every year around 400
natural disasters are expected to happen around the world.
Alongside natural disasters, there are 30—40 active armed
conflicts at any time [1]. Furthermore, there is an ever-
present threat of terrorist attacks, as well as an increased
number of lost or missing people [2]. This increased number
of disasters and subsequent number of Search and Rescue
(SAR) operations leads to an increase in the workload of
SAR teams around the world. Since the ultimate goal of any
SAR operation is to save the lives of affected people, any
way of increasing the capacity, safety, and capabilities of
SAR teams, as well as reducing their response time, is of
paramount importance. One of the main ways to accomplish
these goals is to use robots in SAR operations.

Over the previous years, SAR robots have already been
used, and their adoption, as well as their capabilities, are
continuously increasing. One of the first instances of SAR
robot deployment was during the World Trade Center (WTC)
collapse in 2001 [3]. Ever since then, SAR robots have
been deployed in most natural and man-made disaster sce-
narios, most notably during the Fukushima nuclear power
plant disaster in Japan [4]. With the rapid advancement in
technologies required by the SAR operations, thus the SAR
robots as well, we are expecting to see an increase in the
number and scope of the automated SAR missions.

The field of SAR has garnered interest and has led to
the emergence of many survey studies. The chapter Search
and Rescue Robotics in [5] covers how disasters impact the
design of rescue robots, the sorts of robots deployed, their
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Fig. 1: Overview of our survey paper.

assessment, and the problems and future of these robots,
with an emphasis on disaster rescue. Similarly, Schneider and
Wildermuth evaluated the performance of Unmanned Ground
Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs)
in disaster response activities. Their work outlines specific
requirements for SAR, including navigation, mapping, and
casualty identification, and presents innovative hardware
designs for SAR robots [6].

Moreover, Bogue examined the prospects of robots in
disaster relief and search and rescue operations, with a
specific emphasis on addressing user requirements and pri-
oritizing development efforts. The identification of key user
requirements and development goals for aerial, ground, and
marine robots has been accomplished in his work, which
directs research and development efforts for SAR [7]. Most
recently, a survey about simulation tools for Urban Search
and Rescue (USAR) in presented in [8]. Despite significant
interest in surveying SAR, earlier work does not give an
overview of SAR software development, particularly state-
of-the-art perception and localization systems. In addition,
an in-depth assessment of what is required and what is a
restriction in terms of hardware and software for UGVs and
UAVs is inadequate.

Our primary contribution fills the existing gap by present-
ing a comprehensive state-of-the-art survey of the require-
ments, hardware, software, and platforms crucial for SAR
operations, as depicted in Fig. 1. Additionally, we provide
an in-depth analysis of sensors and perception algorithms
specifically tailored for SAR applications, topics that have
been notably underexplored in previous literature.

The structure of this paper is organized as follows: Section
II introduces the requirements for hardware and software
utilized in SAR robots. The specific hardware and software



components are detailed in Section III. Finally, Section
IV provides the conclusion and offers insights into future
directions for SAR research.

II. REQUIREMENTS

SAR robots need to operate in some of the harshest and
most challenging environments in the world. On top of that,
their main task is the rescue of injured, trapped or lost people,
making the allowed error margin extremely slim. Consid-
ering this, the requirements for UAVs and UGVs used in
SAR operations are very strict. According to Schneider and
Wildermuth [6] SAR robot requirements can be divided into
three main categories: Search-specific, Rescue-specific, and
General requirements. Search-specific requirements include
all the requirements regarding navigation and mapping, as
well as casualty identification. All communication, casualty
support, and remote mobile manipulation requirements are
grouped under Rescue-specific requirements. Finally, time of
operation (battery life), user interface, safety, and portability
requirements are all grouped under General requirements.
Due to the scope of this paper, we are mainly focusing on
the Search-specific group of requirements.

To achieve navigation and mapping, as well as survivor
identification goals, different sensing and perception tech-
niques and technologies need to be utilized. No matter which
combination of sensors and perception algorithms is used, it
needs to be able to provide accurate, complete and timely
information to the robot or the operator for decision-making.
Furthermore, redundancy in sensors and perception algo-
rithms is desired, due to the harsh environments of operation,
which make the chance of equipment failure or unsuitability
greater. According to Bogue [7], SAR perception systems
need to complete the following tasks: Obstacle detection,
Rapid image analysis, Indoor and outdoor Operation, and
Operation in vision-obscured environments. Furthermore, the
SAR robot in general needs to be able to avoid collisions,
achieve adequate operation times, be able to operate in
collapsed buildings or underground, operate while being
exposed to hazardous chemicals, radiation levels, etc., and
have sufficient dust and moisture protection. The communi-
cation aspect of the SAR robot is also a big topic among
the requirements. Generally, it can not be assumed that
communication with the robot will be possible throughout
the entire mission, so at least a certain degree of autonomy
is required. Depending on the application field, a single SAR
robot does not need to fulfil all requirements.

III. HARDWARE AND SOFTWARE FOR SEARCH AND
RESCUE

A. Sense-Plan-Act

In robotics, paradigms are built on three widely accepted
essential elements: SENSE, PLAN, and ACT (see Fig. 1) [9].
These three classes can also be applied to robot software. If a
function involves obtaining data about the environment using
sensors and developing a representation of the world for other
operations, it falls under the SENSE category. If a function
gets the previously defined world model and provides one or

more action plans for the robot to perform, it is classified as
a PLAN function. The ACT generates actuator instructions
based on planning stage instructions. This design paradigm
has been applied in SAR robots as well, but Sense-Plan-Act
might be merged [2], [10]. As already briefly mentioned in
the introduction, the focus of this paper is on the sensors,
algorithms, and software linked to the SENSE part. However,
the PLAN and ACT parts are also of great importance and
are topics that deserve their own separate analysis due to the
sheer scope they cover.

B. Sensors

In order to fulfil all their missions successfully, SAR
robots are equipped with a plethora of different sensors,
ranging from the simplest odometry sensors to complex
cameras and Radars. We divide all these sensors into two
different categories: localization sensors and perception
sensors. Table I gives an overview of all the sensor types
mentioned, alongside with the sources.

1) Localization Sensors: are sensors used purely for lo-
calising the robot in space. Their main task is to provide
an accurate position (relative or absolute) of the robot.
This position information is essential for navigation, path
planning, and rescue action planning and execution. These
sensors function based on different technologies and tech-
niques. In SAR applications, due to complex and dynamic
environments, it is needed to have robust and redundant
localization.

Global navigation satellite system (GNSS) sensors rely
on communication with different satellites and triangulation
of signals from those satellites to determine the absolute
position of the robot. GNSS sensors are the most common
sensors used for localization, not only in SAR robots, but in
general. There are different navigation satellite systems in-
cluding GPS, Galileo (EGNSS), GLONASS, BDS (BeiDou),
QZSS, as well as others. GNSS receivers can utilize one
or more of the aforementioned satellite systems. Although
GNSS sensors are very precise, with maximum accuracies
in the centimeter range, their major limitation is the required
clear line of sight for communication with the satellites,
limiting their usage to outdoor environments. They are also
quite susceptible to reflected signals, a phenomenon known
as the multi-path problem.

Wheel odometry sensors utilize rotary encoders to quan-
tify wheel rotations, facilitating the conversion of this infor-
mation into positional and velocity data. Despite its accuracy
in the short term, the method is prone to error accumulation
over time, particularly due to issues such as wheel slippage
and friction. Additionally, the determination of orientation
necessitates an alternative measurement method or a calcu-
lation based on both wheel rotation and distance covered. It
is important to note that this technology is applicable solely
to tracked and wheeled UGVs and is not suitable for UAVs.
These sensors are employed in SAR robots as a redundant
measure when GNSS sensors fail to provide precise and
accurate location information.



The Inertial Measurement Unit (IMU), encompassing an
Accelerometer, a Magnetometer, and a Gyroscope, is pivotal
for determining a robot’s heading, attitude, and position.
However, susceptibility to interference from electronics and
the robot’s structure poses challenges for accurate readings,
making IMUs less viable for prolonged usage. Addressing
these challenges requires careful engineering considerations
for IMU quality to enhance long-term reliability in diverse
operational scenarios. In conjunction with the IMU, the
Inertial Navigation System (INS) serves as a comprehensive
solution for autonomous robot guidance. The IMU captures
linear accelerations and angular rates, while the INS, pow-
ered by advanced algorithms including Kalman filtering,
processes this data to continuously compute the robot’s posi-
tion, velocity, and orientation. This self-contained navigation
system is particularly advantageous in SAR scenarios where
external signals like GNSS are unreliable or unavailable,
ensuring continuous operation and high accuracy over short
to medium distances.

2) Perception Sensors: Perception sensors are devices
that gather information from the environment to enhance
awareness and understanding. These sensors are employed
in SAR robots to collect data about the surroundings. The
information collected by perception sensors aids in decision-
making processes, allowing systems to respond effectively to
changing conditions or stimuli.

Light Detection and Ranging (Lidar), harnessing In-
frared (IR) lasers as a light source, presents a promis-
ing avenue for achieving robust perception across diverse
environments and weather conditions, including potential
underwater applications. This technology, known for its
high resolution and cost-effectiveness, encounters challenges
related to reduced precision in fog and heavy rain, along
with susceptibility to lens contamination. Exploring improve-
ments like the integration of flash Lidar technology and the
adoption of solid-state Lidars is crucial for overcoming these
obstacles and ensuring consistent and reliable performance.
The feasibility of attaining a full 360° Horizontal Field of
View (HFoV) coverage with a singular sensor streamlines
practical implementation, contributing to the continual evo-
lution of iidar systems based on IR laser technology.

Radio Detection and Ranging (Radar), despite its lower
resolution, plays a crucial role in SAR applications due to
its adaptability in diverse conditions and extended detection
range, making it essential for effective remote sensing. In
challenging scenarios, Radar demonstrates reliability and re-
duced sensitivity to environmental factors like interference or
topographic variations. The trade-off between resolution and
detection range highlights Radar’s significance in providing
vital information for SAR applications.

Cameras play a pivotal role in achieving comprehensive
environmental perception for SAR robots. One approach
involves the utilization of RGB-D cameras employing stereo
depth measurement. A single 360° HFoV camera is charac-
terized by lower complexity and implementation difficulty
but is constrained to a 20m range and daylight operation.
Alternatively, a multi-camera setup, albeit more intricate due

to point cloud fusion, offers a complete 360° HFoV, with
some models theoretically providing an infinite depth range.
However, nocturnal limitations prompt the suggestion of
augmenting these systems with thermal cameras or infrared
(IR) coupled with distance measuring systems. Additionally,
thermal cameras, recognized for their passive operation and
all-weather functionality, require multiple units owing to
their limited HFoV. Meanwhile, the Depth Time of Flight
(ToF) camera, functioning akin to Lidar but at a lower cost
with greater resistance to ambient light, is considered for
redundancy or close-range object detection. Lastly, the RGB-
D camera employing ToF depth measurement combines
ToF sensors with RGB cameras to generate point clouds,
necessitating multiple sensors for a complete 360° HFoV.
These camera configurations collectively address challenges
related to range, accuracy, environmental conditions, and
operational hours in autonomous vehicle perception systems.

Microphone arrays are crucial for sound source local-
ization in various applications. In Search and Rescue robots,
these arrays are designed to optimize sensory input for effec-
tive audio-based detection. Circular or planar configurations
with strategically placed microphones capture sound from
different directions. The choice of sensors considers factors
like sensitivity, frequency response, and directional char-
acteristics. High-quality microphones with broad frequency
ranges are preferred for dynamic environments. Additionally,
features like low self-noise enhance the system’s ability to
detect faint or distant sounds, which is crucial in search and
rescue scenarios.

C. Perception

This section delves into how different sensors are em-
ployed for perception and recognition, which is crucial for
effective and safe operations. These are illustrated in Fig. 2
and will be discussed in the following subsections.

1) 3D Reconstruction: Recent advances in 3D reconstruc-
tion, crucial for rescue missions, utilize depth, monocular,
and stereo cameras, with Lidar for sparse point clouds, as
shown in Fig. 2a. Depth cameras excel indoors but falter
outdoors, impacting 3D city mapping in complex outdoor
settings where Lidar is essential [37]. 3D map reconstruction
with cameras involves a sophisticated algorithmic process
[44], [45], differing from real-time SLAM (Simultaneous Lo-
calization and Mapping). Offline Lidar reconstruction, unlike
SLAM, focuses on data precision and detail, yielding accu-
rate 3D models useful in archaeology, urban planning, and
forestry. This method integrates multi-modal data, including
high-resolution cameras, thermal imaging, and sometimes
ground-penetrating radar, enhancing model depth and accu-
racy. Machine learning further refines this data, producing
comprehensive 3D models with contextual richness.

2) Object Detection and Classification: High-precision
3D maps enable unmanned vehicles and drones to efficiently
navigate rescue areas with minimal computing resources,
focusing on tasks like object detection. In disaster areas,
deploying UAVs and UGVs with advanced detection systems
is vital for rescue efforts.



TABLE I: Overview and comparison of sensors used for SAR operations

Sensor Usage | Range Price OR* Type Failure and Limiting circumstances Sources
Obstructions and Signal Blockage, Multipath Interference,
GNSS L N/A Low Low Passive Adverse Weather Conditions, Poor Satellite Geometry, [11], [12]
Signal Spoofing and Jamming, Electromagnetic Interference
Sensor Calibration Issues, Electromagnetic Interference, (111, [13]. [14]
IMU/INS L N/A Medium | Medium | Passive Temperature Variations, Sensor Cross-Coupling, [’1 5] [’1 6] ’
High Dynamic Conditions, Vibration and Shock i
Mono RGB Low Light Conditions, Noisy Environments, Occlusions,
L&P Low Low Low Passive | High Dynamic Range Scenes, Adverse Weather Conditions, [17], [18]
camera . .
Glossy or Reflective Surfaces, Fast Motion
Sterco RGB Calibration Issues, Baseline Limitations, Occlusions,
camera L&P Low Medium Low Passive Low Light Conditions, Glossy or Reflective Surfaces, [18], [19]
Inadequate Disparity Range, Adverse Weather Conditions
RGB-D . . Low Light Conditions, Occlusions, Smoke, [18], [19],
camera L &P Low Medium Low Active Adverse Weather Conditions, Fast Motion [20]
Low temperature variation, Infrared transparency,
Thermal L&P Low High High Passive Weather interference, Reflective surfaces, (18], [19]. [21],
camera R L [22], [23], [24]
Distance limitations, Low contrast scenes
. . . . . Adverse Weather Conditions, Sun Glare, Occlusions, [18], [19], [25],
Lidar L &P High High Medium Active Interference From Other Lidars, Smoke [26], [27], [28]
. . . . Obstructions or Clutter, Electromagnetic Interference, [18], [19], [29],
. L&P High Medium High Active Occlusions, Unfavourable Terrain, Vibrations [30], [31]
Microphone . . . Noise Interference, Reflections and Poor Acoustics, [19], [32], [33],
array P Low Medium | Medium | Passive Electronic Interference, Environmental Conditions [34], [35], [36]

Abbreviations are: Localization (L), Perception (P), Not Applicable (N/A). *Operational robustness (OR) in the sense of the number

various environments and applications where the sensor can be effectively used.
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Fig. 2: Illustration of perception and localization methods.

Deep learning, especially Convolutional Neural Networks
(CNNs), is crucial here. Algorithms like Faster R-CNN [46]
and YOLO (You Only Look Once) [38] are commonly
used for detection, as shown in Fig. 2b. Faster R-CNN
identifies potential object locations before classifying them
with CNNs, while YOLO predicts object classifications and
locations simultaneously, offering faster processing crucial in
emergencies. In poor visibility or partially obscured condi-
tions, algorithms like SSD (Single Shot MultiBox Detector)
[47] and RetinaNet [48] ensure reliable detection. Integrating
these algorithms into UAVs and UG Vs creates intelligent sys-
tems capable of autonomous navigation and vital information
gathering in disaster zones. This technology enhances rescue

operation efficiency, enabling quicker responses and better-
informed decisions in emergencies.

3) Scene Understanding: 3D scene understanding in com-
puter vision extends beyond object detection to interpret
environments, including spatial relationships, hazard identi-
fication, and pathway recognition, as shown in Fig. 2c. Seg-
mentation algorithms [49] are essential, dividing the 3D SAR
space into coherent parts like buildings, roads, and terrain,
aiding in assessing accessibility and safety in disaster zones
[50]-[53]. Integrating these algorithms into rescue operations
transforms response capabilities. Advanced 3D scene under-
standing allows drones and robots to autonomously navigate
complex terrains, identify safe zones, assess structural sta-



bility, and adapt to evolving environments. This enhances
rescue safety and efficiency, reduces response time, and
ultimately saves lives and mitigates disaster impacts.

4) Sound Source Localization (SSL): Sound source lo-
calization (SSL), as shown in Fig. 2d emerges as a critical
technology, especially in scenarios where visual cues are
obscured or unavailable. SSL enables unmanned systems to
pinpoint the location of individuals or key sound-emitting
sources solely based on auditory signals. This technology,
integrating various techniques such as Direction-of-Arrival
(DOA) estimation, distance estimation, and Time Difference
of Arrival (TDOA) calculations, significantly enhances the
accuracy and reliability of localization in unmanned systems
[54]-[58]. The application of SSL in robotics, especially
in drones and unmanned vehicles, encompasses advanced
methodologies like learning-based approaches using neural
networks, beamforming techniques, and particle filtering
[59]-[61]. These methods address the challenges of multiple
sound sources and mobility of both the robots and the sound
sources, thereby facilitating rapid and precise localization in
rescue scenarios. However, SSL in complex environments
still faces challenges such as noise interference, reverberation
effects, and the identification of multiple sound sources
[62]-[64]. Future research is directed towards enhancing the
robustness and adaptability of SSL systems to cater to the
dynamic nature of rescue environments, thereby augmenting
the efficiency of rescue operations.

D. Localization

This section focused on how these vehicles use sensor data
for precise self-localization and environmental mapping.

1) Simultaneous Localization and Mapping(SLAM):
SLAM (Simultaneous Localization and Mapping) algo-
rithms, as shown in Fig. 2e are crucial in rescue operations,
enabling unmanned vehicles to navigate and map unknown
or dynamic environments.

Visual SLAM (vSLAM), using optical sensors, is key in
precision navigation, like moving through collapsed build-
ings. ORB-SLAM [65], a notable example, uses ORB fea-
tures for mapping and tracking, adapting to lighting and per-
spective changes. This provides rescue teams with detailed
visual data of the environment.

Lidar-based SLAM, employing laser sensors, excels in
creating 3D maps, suitable for outdoor or large-scale disaster
environments. LOAM-related works [41], [66] offer high
accuracy in localization and mapping, which is crucial for
disaster response planning and damage assessment.

Multi-modal SLAM combines various data sources, like
cameras, Lidar and GPS. Algorithms like R3IIVE [67] in-
tegrate visual SLAM’s imagery with Lidar SLAM’s depth
data, offering a comprehensive environment view. This is
particularly effective in challenging conditions, like low-light
or varied terrains, ensuring reliable navigation and mapping.

In rescue operations, SLAM algorithms’ ability to rapidly
generate accurate maps and navigate effectively is life-
saving. They allow drones and unmanned vehicles to ex-
plore dangerous or inaccessible areas, quickly identifying

survivors, assessing structures, and providing critical infor-
mation, enhancing the effectiveness of rescue efforts.

2) Dead reckoning: (IMU, odometry localization)

Dead Reckoning, as shown in Fig. [68], [69] works
by estimating the current position based on a previously
determined location, using data about speed and direction
of movement2f. This method can be effective when quick
and approximate localization is necessary, especially in
fast-changing scenarios typical of rescue missions. Dead
Reckoning provides a foundation for initial localization and
quick navigation decisions [70]. It enables robots to maintain
an ongoing estimate of their position, allowing them to
traverse unknown or hazardous terrains to locate survivors,
deliver supplies, or assess structural integrity in areas where
traditional localization methods are ineffective. Furthermore,
when Dead Reckoning is integrated with other technologies
like SLAM or GPS [71], it forms part of a robust, multi-
modal localization system. This integration allows for con-
tinuous and accurate tracking of rescue vehicles or drones,
ensuring that they can operate effectively in the complex and
dynamic environments typical of disaster scenarios.

3) GNSS localization: In the sphere of SAR operations,
Global Navigation Satellite Systems (GNSS) [72], which
include systems like GPS, GLONASS, Galileo, and BeiDou
[73], are integral for precise and reliable localization, as
shown in Fig. 2g.

E. Platforms and Locomotion

In the realm of SAR operations, the strategic selection
of platforms and their locomotion attributes plays a pivotal
role in operational efficacy. Table Il offers a systematic
comparison of diverse SAR platforms, from aerial UAVs to
aquatic Unmanned Surface Vessels (USVs), each classified
by mobility type. Evaluated by robotics specialists on crucial
performance metrics—Mobility, Stability, Adaptation to the
Environment, Energy Efficiency, and Speed and Agility—the
platforms are rated on a scale reflecting their effectiveness.
This analytical overview is useful for understanding each
platform’s strengths and limitations, eventually improving
life-saving responses in critical situations.

F. Simulation Tools

Simulation tools are crucial in the development of SAR
robots, encompassing hardware and software, as they offer
a safer, cost-effective, and efficient alternative to real-world
trials. They enable researchers to evaluate new concepts
without harm and provide prompt error detection, enhancing
efficiency in the construction of robotic systems [8].

The table III compares open-source simulation tools for
SAR operations, evaluating them across key criteria such as
simulation capabilities of harsh environments, environmental
factors (rain, smoke, snow, fire, slippery ground, etc.), sensor
and robot modeling, out-of-box software, interface quality,
and hardware requirements, based on our previous work
and projects [77]. ISAAC consistently receives good or very
good ratings in all categories. Nonetheless, it has the most
stringent hardware requirements. The igniting Gazebo could



TABLE II: Overview and comparison of platforms and locomotion types for SAR operations

Platform Propulsion type Locomotion type MO ST OR OD SA Example

UAV Propeller, Jet Flying High | Low | + Low | +++ | DIJI Drone

UGv Tracked, Wheeled Rolling Low | High | +++ | High | + THeMIS [74]
Bipedal,Quadrupedal, Hexapod, | Walking, Running, . .

Legged robots Octoped, Multi-legged Jumping, Climbing Low | Low | ++ Low | ++ Unitree Robotics

Humanoid - Sam; as lfagged " obots, Low | Low | ++ Low | ++ Tesla Optimus

manipulating objects
serpentine robot | - Crawling, Climbing Low | High | +++ | o + OmniTread OT-4 [75]
USv Propeller Steaming Low | High | ++ High | ++ Guardian [76]

Abbreviations in the first row are: Mobility (MO), Stability (ST), Operational Robustness (OR), Operational Duration (OD), Speed
and Agility (SA). The symbols rate the quality of implementation: (0) not rated or irrelevant, (+) ok, (++) good, (+++) very good.

TABLE III: Overview and comparison of open-source simulation tools for SAR, inspired by [77]

Simulator Group Visualization HE EF SE RM | OSW | IF HWR | License

Carla [78] AD UE 4.26 + ++ +++ | + +++ +++ | ++ MIT & CC-BY*
AirSim [79] Drone/AD UE 5.2 ++ +++ | ++ + ++ ++ ++ MIT

Ignition Gazebo [80] | Robotics OGRE2 +++ | ++ ++ +++ | +++ +++ | + Apache 2.0
ISAAC [81] Robotics Omniverse ++ ++ +H+ | A |+ ++ +++ NVIDIA EULA
MuJoCo [82] RL OpenGL ++ ++ + +++ | +++ ++ + Apache 2.0
Webots [83] Robotics OpenGL + o ++ +++ | +++ +++ | + Apache 2.0
GRID [82] LLM+Drone | UE 5.2 ++ +++ | ++ + ++ ++ ++ RAIL-S
ZeroSim [84] Robotics Unity 2020.x LTS | o o ++ + + + + BSD 2-Clause

Abbreviations in the first row are: Harsh Environments (HE), Environmental Factors (EF), Sensor (SE), Robot Model (RM), Out-of-
box Software (OSW), Interface (IF), HWR (Hardware Requirement). The symbols rate the quality of implementation: (o) not rated
or irrelevant, (+) ok, (++) good, (+++) very good. *The code of Carla simulator has a MIT license while the assets have a CC-BY

license.

be a light alternative with generally good ratings. AirSim,
MuJoCo, and GRID are also effective, particularly in mod-
eling environmental conditions and sensors. Carla receives
mixed evaluations but provides excellent sensor simulation.
Unfortunately, no direct simulation tool is specifically created
for SAR research. However, there are several feasible tools
for various parts of SAR simulation, each with its own set
of capabilities in certain simulation fidelity areas.

IV. CONCLUSION AND OUTLOOK

This paper aims to contribute to the evolving landscape of
Search and Rescue (SAR) systems by providing a compre-
hensive overview of sensing and perception techniques appli-
cable to SAR robotics. In doing so, we conducted a heuristic
comparison of various sensor and hardware options, summa-
rizing the findings in corresponding tables that highlight the
main contributions of this survey. However, the authors feel
obliged to emphasize that the selection of the SAR platform,
along with the most suitable sensors and algorithms, as well
as the choice of suitable simulation environments, depends
on specific SAR mission requirements and specifications.

Although organizations like RoboCupRescue Robot
League (RRL) [85] provide a platform for developing and
benchmarking SAR robots in complex and hazardous en-
vironments, we discovered that there is a lack of a sim-
ulation benchmark to compare the hardware and software
performance of various robots for SAR missions in harsh
environments. We believe that constructing such a bench-
mark (e.g., a challenge) would be extremely useful as an
initiative. Furthermore, the integration of several SAR robots

in a simulated environment in this context would also aid in
the analysis of real-world scenarios and may reshape the
landscape of future SAR missions.

Looking ahead, the development of state-of-the-art per-
ception and localization systems is vital for the further
advancement of robotic SAR systems. This paper serves
as a roadmap for navigating the intricacies of SAR soft-
ware development, shedding light on the requirements and
restrictions associated with SAR platforms. As the SAR
field continues to evolve, this overview aims to guide future
research and development efforts, fostering a more resilient
and responsive SAR ecosystem for the benefit of those
affected by disasters worldwide.
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